Modelling, Visualising and Summarising Documents with a Single Convolutional Neural Network

نویسندگان

  • Misha Denil
  • Alban Demiraj
  • Nal Kalchbrenner
  • Phil Blunsom
  • Nando de Freitas
چکیده

Capturing the compositional process which maps the meaning of words to that of documents is a central challenge for researchers in Natural Language Processing and Information Retrieval. We introduce a model that is able to represent the meaning of documents by embedding them in a low dimensional vector space, while preserving distinctions of word and sentence order crucial for capturing nuanced semantics. Our model is based on an extended Dynamic Convolution Neural Network, which learns convolution filters at both the sentence and document level, hierarchically learning to capture and compose low level lexical features into high level semantic concepts. We demonstrate the effectiveness of this model on a range of document modelling tasks, achieving strong results with no feature engineering and with a more compact model. Inspired by recent advances in visualising deep convolution networks for computer vision, we present a novel visualisation technique for our document networks which not only provides insight into their learning process, but also can be interpreted to produce a compelling automatic summarisation system for texts.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Convolutional Neural Network based on Adaptive Pooling for Classification of Noisy Images

Convolutional neural network is one of the effective methods for classifying images that performs learning using convolutional, pooling and fully-connected layers. All kinds of noise disrupt the operation of this network. Noise images reduce classification accuracy and increase convolutional neural network training time. Noise is an unwanted signal that destroys the original signal. Noise chang...

متن کامل

A multi-scale convolutional neural network for automatic cloud and cloud shadow detection from Gaofen-1 images

The reconstruction of the information contaminated by cloud and cloud shadow is an important step in pre-processing of high-resolution satellite images. The cloud and cloud shadow automatic segmentation could be the first step in the process of reconstructing the information contaminated by cloud and cloud shadow. This stage is a remarkable challenge due to the relatively inefficient performanc...

متن کامل

Double-Star Detection Using Convolutional Neural Network in Atmospheric Turbulence

In this paper, we investigate the usage of machine learning in the detection and recognition of double stars. To do this, numerous images including one star and double stars are simulated. Then, 100 terms of Zernike expansion with random coefficients are considered as aberrations to impose on the aforementioned images. Also, a telescope with a specific aperture is simulated. In this work, two k...

متن کامل

Learning Document Image Features With SqueezeNet Convolutional Neural Network

The classification of various document images is considered an important step towards building a modern digital library or office automation system. Convolutional Neural Network (CNN) classifiers trained with backpropagation are considered to be the current state of the art model for this task. However, there are two major drawbacks for these classifiers: the huge computational power demand for...

متن کامل

A Radon-based Convolutional Neural Network for Medical Image Retrieval

Image classification and retrieval systems have gained more attention because of easier access to high-tech medical imaging. However, the lack of availability of large-scaled balanced labelled data in medicine is still a challenge. Simplicity, practicality, efficiency, and effectiveness are the main targets in medical domain. To achieve these goals, Radon transformation, which is a well-known t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1406.3830  شماره 

صفحات  -

تاریخ انتشار 2014